

Available online at www.sciencedirect.com



Journal of Organometallic Chemistry 676 (2003) 55-61



www.elsevier.com/locate/jorganchem

# Study of metal exchange reactions in cobalt containing clusters

Yu-Hua Zhang, Pu Liu<sup>1</sup>, Chun-Gu Xia, Bin Hu, Yuan-Qi Yin\*

State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

Received 4 February 2003; received in revised form 9 April 2003; accepted 9 April 2003

#### Abstract

Treatment of the linked cluster {[ $(\mu_3-C)R$ ]Co<sub>2</sub>Mo(CO)<sub>8</sub>[ $\eta^5-C_5H_4C(O)$ ]}<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-*p* (**1a**, R = CO<sub>2</sub>Et; **1b**, R = C<sub>6</sub>H<sub>5</sub>) with the substituted cyclopentadienyl tricarbonyl molybdenum anion [Mo(CO)<sub>3</sub>( $\eta^5-C_5H_4R'$ )]<sup>-</sup> in THF gave rise to the formation of the single cluster complex [( $\mu_3-C$ )R]Co<sub>2</sub>Mo(CO)<sub>8</sub>( $\eta^5-C_5H_4R'$ ) (**2a**, R = CO<sub>2</sub>Et, R' = H; **2b**, R = CO<sub>2</sub>Et, R' = C(O)Me; **2c**, R = R' = CO<sub>2</sub>Et; **2d**, R = C<sub>6</sub>H<sub>5</sub>, R' = CO<sub>2</sub>Et) as the only product. However, reaction of cluster {( $\mu_3$ -Se)RuCoMo(CO)<sub>8</sub>[ $\eta^5-C_5H_4C(O)$ ]}<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-*p* (**1c**) with NaMo(CO)<sub>3</sub>[ $\eta^5-C_5H_4C(O)$ Me] yielded the linked cluster compound ( $\mu_3$ -Se)RuCoMo(CO)<sub>8</sub>[ $\eta^5-C_5H_4C(O)$ -*p*-C<sub>6</sub>H<sub>4</sub>-C(O)C<sub>3</sub>H<sub>4</sub>- $\eta^5$ ](CO)-*p*RuMo<sub>2</sub>( $\mu_3$ -Se)[ $\eta^5-C_5H_4C(O)$ Me] (**3**). Further reactions of **2b** and cluster [( $\mu_3$ -C)CO<sub>2</sub>Et]Co<sub>2</sub>Mo(CO)<sub>8</sub>[ $\eta^5-C_5H_4C(O)$ -*p*-C<sub>6</sub>H<sub>4</sub>CO<sub>2</sub>Me] (**2e**), respectively, with the monoanion [Mo(CO)<sub>3</sub>( $\eta^5-C_5H_5$ )]<sup>-</sup> gave four products **2a**, [( $\mu_3$ -C)CO<sub>2</sub>Et]CoMo<sub>2</sub>(CO)<sub>7</sub>( $\eta^5-C_5H_5$ ]<sub>2</sub> (**4**), [( $\mu_3$ -C)CO<sub>2</sub>Et]CoMo<sub>2</sub>(CO)<sub>8</sub>( $\eta^5-C_5H_4R$ )( $\eta^5-C_5H_4R$ )]<sup>-</sup> afforded three cluster products **4**, **2** (**2b**, R = C(O)Me; **2e**, R = C(O)-*p*-C<sub>6</sub>H<sub>4</sub>CO<sub>2</sub>Me) and [( $\mu_3$ -C)CO<sub>2</sub>Et]CoMo<sub>2</sub>(CO)<sub>8</sub>( $\eta^5-C_5H_4R$ )]<sup>-</sup> afforded three cluster products **4**, **2** (**2b**, R = C(O)Me; **2e**, R = C(O)-*p*-C<sub>6</sub>H<sub>4</sub>CO<sub>2</sub>Me) and **5** (**5a**, R = C(O)-*p*-C<sub>6</sub>H<sub>4</sub>CO<sub>2</sub>Me). All the compounds were fully characterized by elemental and spectroscopic analyses. The molecular structures of clusters **2a** and **4** have been determined by single-crystal X-ray diffraction. © 2003 Elsevier Science B.V. All rights reserved.

Keywords: Transition metal; Metal exchange; Cobalt; Molybdenum; Tetrahedral cluster

### 1. Introduction

In recent years the isolobal displacement reactions, due to their theoretical interest and wide uses in rational synthesis of transition-metal cluster complexes, have attracted considerable attention [1–21]. So far, many examples are known in which a  $d^9$  ML<sub>3</sub> fragment Co(CO)<sub>3</sub> can be displaced by an isolobal  $d^5$  ML<sub>5</sub> fragment Cp\*(CO)<sub>2</sub>M (Cp\* = Cp or substituted Cp, M = Cr, Mo or W). Some ( $\mu_3$ -X)Co<sub>2</sub>M (X = C, S, Se, Te, P; M = Cr, Mo, W, Fe, Ni, Ru) and ( $\mu_2$ -X)CoM (M = Mo or W) tetrahedrane-type clusters were prepared by such procedures [1–21]. Our interests in higher-nuclearity cluster synthesis [17,22–24] prompted us to initiate a study in this area, and we found that metal exchange reaction in linked clusters compounds is

E-mail address: hcom@ns.lzb.ac.cn (Y.-Q. Yin).

regioselective [15,17], and the Co(CO)<sub>3</sub> group in different cluster units has different reactivity [16], providing a potential application in the syntheses of polymeric species. It might be possible to prepare supramolecular cluster compounds in a molecular design manner by the metal exchange reactions of linked clusters.

In order to investigate metal exchange reactions in linked clusters more extensively, we carried out a study on reactions of  $\{(\mu_3-X)Co_2Mo(CO)_8[\eta^5-C_5H_4C(O)]\}_2$ - $C_6H_4$ -p (X = CCO\_2Et, CC\_6H\_5 or Se) with [Mo(CO)\_3(\eta^5-C\_5H\_4R')]^- (R' = H, C(O)Me, CO\_2Et). It was found that the two different  $d^5$  ML<sub>5</sub> fragments of the type Cp\*(CO)<sub>2</sub>M can displace each other in Co(CO)<sub>3</sub> containing cluster compounds. The single cluster compound  $(\mu_3-X)Co_2Mo(CO)_8(\eta^5-C_5H_4R')$  can be separated as the only product in carbon atom capped clusters. However, the selenium atom capped cluster compound  $\{(\mu_3-Se)RuCoMo(CO)_8[\eta^5-C_5H_4C(O)]\}_2C_6H_4$ -p was found to react with NaMo(CO)<sub>3</sub>[ $\eta^5-C_5H_4C(O)Me$ ] to yield the linked cluster compound  $(\mu_3-Se)RuCoMo(CO)_8[\eta^5-C_5H_4-\eta^5](CO)_7RuMo_2(\mu_3-C_5H_4C(O)-p-C_6H_4-C(O)C_5H_4-\eta^5](CO)_7RuMo_2(\mu_3-C_5H_4C(O)-p-C_6H_4-C(O)C_5H_4-\eta^5](CO)_7RuMo_2(\mu_3-C_5H_4C(O)-p-C_6H_4-C(O)C_5H_4-\eta^5](CO)_7RuMo_2(\mu_3-C_5H_4C(O)-p-C_6H_4-C(O)C_5H_4-\eta^5](CO)_7RuMo_2(\mu_3-C_5H_4C(O)-p-C_6H_4-C(O)-p-C_6H_4-C(O)-p-C_6H_4-C(O)-p-C_6H_4-C(O)-p-C_6H_4-C(O)-p-C_6H_4-C(O)-p-C_6H_4-C(O)-p-C_6H_4-C(O)-p-C_6H_4-C(O)-p-C_6H_4-C(O)-p-C_6H_4-C(O)-p-C_6H_4-C(O)-p-C_6H_4-C(O)-p-C_6H_4-C(O)-p-C_6H_4-C(O)-p-C_6H_4-D)$ 

<sup>\*</sup> Corresponding author. Fax: +86-931-827-7088.

<sup>&</sup>lt;sup>1</sup> Present address: Department of Chemistry, Zhengzhou University, Zhengzhou 450052, China.

Se)[ $\eta^5$ -C<sub>5</sub>H<sub>4</sub>C(O)Me]. Further experiments indicated that the existence of bulky electron-withdrawing functional substitution (R') on the cyclopentadienyl ligand can decrease the reactivity of the [Mo(CO)<sub>3</sub>( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>R')]<sup>-</sup> unit in metal exchange reactions. Nine novel cluster compounds were synthesized, and the crystal structures of **2a** and **4** were determined.

### 2. Experimental

#### 2.1. General comments

All reactions were carried out under pure nitrogen using standard Schlenk techniques. All solvents were dried and deoxygenated according to standard procedures before use. Chromatographic separations and purification were performed on 160–200 mesh silica gel.

Infrared spectra were recorded as pressed KBr disks on a Nicolet FT-IR 10 DX spectrophotometer. <sup>1</sup>H- and <sup>13</sup>C-NMR spectra were recorded on a Bruker AM 400 spectrometer in CDCl<sub>3</sub>-deuterated solvent at ambient temperature. Chemical shifts were given on the  $\delta$  scale relative to SiMe<sub>4</sub> (0.0 ppm). Elemental analyses were carried out on a Carlo Erba 1106 type analyzer.

Cluster complexes {[( $\mu_3$ -C)R]Co<sub>2</sub>Mo(CO)<sub>8</sub>[ $\eta^5$ -C<sub>5</sub>H<sub>4</sub>C(O)]}<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-*p* (**1a**, R = CO<sub>2</sub>Et; **1b**, R = C<sub>6</sub>H<sub>5</sub>), {( $\mu_3$ -Se)RuCoMo(CO)<sub>8</sub>[ $\eta^5$ -C<sub>5</sub>H<sub>4</sub>C(O)]}<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-*p* (**1c**), [( $\mu_3$ -C)CO<sub>2</sub>Et]Co<sub>2</sub>Mo(CO)<sub>8</sub>[ $\eta^5$ -C<sub>5</sub>H<sub>4</sub>C(O)-*p*-C<sub>6</sub>H<sub>4</sub>CO<sub>2</sub>Me] (**2e**) and NaMo(CO)<sub>3</sub>( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>R') (R' = H, C(O)Me, CO<sub>2</sub>Et, C(O)-*p*-C<sub>6</sub>H<sub>4</sub>CO<sub>2</sub>Me) were prepared according to literature methods or slight modifications thereof [21,14,25].

# 2.2. Reaction of **1a** with $Na[Mo(CO)_3(\eta^5-Cp^*)]$

Cluster 1a (653 mg, 0.5 mmol) and NaMo(CO)<sub>3</sub>( $\eta^{5}$ - $C_5H_5$ ) (134 mg, 0.5 mmol) were dissolved in 25 cm<sup>3</sup> of THF and stirred at room temperature for 24 h. Then the solvent was pumped off and the residue was chromatographed on a  $2 \times 25$  cm<sup>2</sup> silica gel column. After a small red band was eluted with petroleum ether, petroleum ether/CH<sub>2</sub>Cl<sub>2</sub> (3:1) afforded the main black blue band, condensing the solvent and crystallization from CH<sub>2</sub>Cl<sub>2</sub>hexane at -20 °C gave the cluster **2a** (115 mg, yield 39%) based on 1a) as black crystals. Anal. Found: C, 34.71; H, 1.73. Calc. for C<sub>17</sub>H<sub>10</sub>O<sub>10</sub>Co<sub>2</sub>Mo: C, 34.72; H, 1.71%. IR (cm<sup>-1</sup>): (vCO) 20 76s, 2037vs, 2020vs, 1999vs, 1971s, 1955s, 1925m and (vCO<sub>2</sub>Et) 1669m. <sup>1</sup>H-NMR:  $\delta$  5.46 (s, 5H, C<sub>5</sub>H<sub>5</sub>), 4.35–4.29 (q, 2H, CH<sub>2</sub>, J =7.1 Hz), 1.38-1.34 (t, 3H, CH<sub>3</sub>, J = 7.1 Hz). Finally, elution with CH<sub>2</sub>Cl<sub>2</sub>/ethyl ether (25:1) yielded the unreacted cluster 1a (300 mg).

Similarly, only one product is formed from the reactions of cluster **1a** with other substituted cyclopentadienyl tricarbonyl molybdenum sodiums. (1) From the reaction of **1a** with NaMo(CO)<sub>3</sub>[ $\eta^5$ -C<sub>5</sub>H<sub>4</sub>C(O)Me], 54 mg (yield 35% based on **1a**) of cluster **2b** as dark green crystals was obtained. Anal. Found: C, 36.21; H, 1.94. Calc. for C<sub>19</sub>H<sub>12</sub>O<sub>11</sub>Co<sub>2</sub>Mo: C, 36.22; H, 1.92%. IR (cm<sup>-1</sup>): ( $\nu$ CO) 2081s, 2032vs, 2011vs, 1997vs, 1984s, 1974s; ( $\nu$ C=O) 1685m and ( $\nu$ CO<sub>2</sub>Et) 1664m. <sup>1</sup>H-NMR:  $\delta$  5.89 (s, 2H, H(2) and H(5)), 5.47 (s, 2H, H(3) and H(4)), 4.26 (s, 2H, CH<sub>2</sub>), 2.28 (s, 3H, CH<sub>3</sub>), 1.30 (s, 3H, CH<sub>3</sub>).

(2) From the reaction of **1a** with NaMo(CO)<sub>3</sub>( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>CO<sub>2</sub>Et), 35 mg (yield 37% based on **1a**) of cluster **2c** as a dark green solid was obtained. Anal. Found: C, 36.37; H, 2.14. Calc. for C<sub>20</sub>H<sub>14</sub>O<sub>12</sub>Co<sub>2</sub>Mo: C, 36.39; H, 2.14%. IR (cm<sup>-1</sup>): (*v*CO) 2091s, 2081s, 2035vs, 2014vs, 1942m, 1897m; (*v*CO<sub>2</sub>Et) 1725m and [*v*( $\mu_3$ -C)CO<sub>2</sub>Et] 1674m. <sup>1</sup>H-NMR:  $\delta$  5.90 (s, 2H, H(2) and H(5)), 5.46 (s, 2H, H(3) and H(4)), 4.22 (s, 4H, 2CH<sub>2</sub>), 1.17 (s, 6H, 2CH<sub>3</sub>).

# 2.3. Reaction of **1b** with $NaMo(CO)_3(\eta^5-C_5H_4CO_2Et)$

A mixture of cluster **1b** (200 mg, 0.16 mmol) and NaMo(CO)<sub>3</sub>( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>CO<sub>2</sub>Et) (55 mg, 0.16 mmol) in 25 cm<sup>3</sup> of THF was stirred at reflux for 1 h. The workup was similar to that described in reaction of **1a** with NaMo(CO)<sub>3</sub>( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>). Single cluster **2d** (32 mg, yield 30% based on **1b**) as black crystals was obtained. Anal. Found: C, 41.57; H, 2.09%. Calc. for C<sub>23</sub>H<sub>14</sub>O<sub>10</sub>Co<sub>2</sub>Mo: C, 41.59; H, 2.12%. IR (cm<sup>-1</sup>): ( $\nu$ CO) 2085s, 2070s, 2021vs, 2000vs, 1979s, 1942m and ( $\nu$ CO<sub>2</sub>Et) 1719s. <sup>1</sup>H-NMR:  $\delta$  7.17 (s, 5H, C<sub>6</sub>H<sub>5</sub>), 5.81 (s, 2H, H(2) and H(5)), 5.22 (s, 2H, H(3) and H(4)), 4.24 (s, 2H, CH<sub>2</sub>), 1.32 (s, 3H, CH<sub>3</sub>). Unreacted **1b** (110 mg) was obtained from the last dark green band.

# 2.4. Reaction of 1c with $NaMo(CO)_3[\eta^5-C_5H_4C(O)-Me]$

Linked cluster 1c (200 mg, 0.145 mmol) and  $NaMo(CO)_{3}[\eta^{5}-C_{5}H_{4}C(O)Me]$  (40 mg, 0.145 mmol) were dissolved in 25 cm<sup>3</sup> of THF and refluxed for 6 h. After removing the solvent, the residue was separated on a silica gel column. Elution with petroleum ether/  $CH_2Cl_2$  (1:1) gave the single cluster **2f** (40 mg, yield 41.4% based on 1c). IR (cm<sup>-1</sup>): (vCO) 2079s, 2048s, 2038s, 2014s, 1991s, 1893s, 1854m and (vC(O)Me) 1686m. <sup>1</sup>H-NMR:  $\delta$  5.88–5.46 (q, 4H, C<sub>5</sub>H<sub>4</sub>), 2.40 (s, 3H, CH<sub>3</sub>). Then a small red band and unreacted material 1c (70 mg) were eluted. Finally, petroleum ether/CH<sub>2</sub>Cl<sub>2</sub>/ethyl ether (1:1:1) afforded the major purple band, from which linked cluster 3 (50 mg, yield 23% based on 1c) as a red solid was obtained. Anal. Found: C, 32.16; H, 1.26. Calc. for C<sub>40</sub>H<sub>19</sub>O<sub>18</sub>CoMo<sub>3</sub>R $u_2Se_2$ : C, 32.15; H, 1.28%. IR (cm<sup>-1</sup>): (vCO) 2078s, 2039s, 1998vs, 1903s, 1863s and (vC=O) 1679m, 1652m. <sup>1</sup>H-NMR:  $\delta$  7.82 (s, 4H, C<sub>6</sub>H<sub>4</sub>), 5.91–5.06 (m, 12H,  $3C_5H_4$ ), 2.29 (s, 3H, CH<sub>3</sub>). <sup>13</sup>C-NMR:  $\delta$  229.65, 227.29, 227.17, 227.07, 226.55, 222.77, 192.96 (carbonyls bound to metals), 189.13, 188.91 (C=O), 140.98, 140.85, 128.29 (C<sub>6</sub>H<sub>4</sub>), 98.18–90.41 (m, 3C<sub>5</sub>H<sub>4</sub>), 27.08 (CH<sub>3</sub>).

### 2.5. Reaction of **2b** and NaMo(CO)<sub>3</sub>( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)

Compound **2b** (940 mg, 1.5 mmol) and NaMo(CO)<sub>3</sub>( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>) (402 mg, 1.5 mmol) were dissolved in THF (60 cm<sup>3</sup>) and refluxed for 7 h. Then THF was removed and the residue was chromatographed on a silica gel column. Elution with petroleum ether/CH<sub>2</sub>Cl<sub>2</sub> (1:1) gave the first band, condensing the solvent and crystallization from CH<sub>2</sub>Cl<sub>2</sub>-hexane at -20 °C gave cluster 2a (60 mg, yield 6.8%) as crystals. Then petroleum ether/CH2Cl2 (1:2) yielded two dark green bands. Cluster 4 (120 mg, yield 12.05%) was obtained from the former band. Anal. Found: C, 38.11; H, 2.26. Calc. for C<sub>21</sub>H<sub>15</sub>O<sub>9</sub>CoMo<sub>2</sub>: C, 38.09; H, 2.28%. IR  $(cm^{-1})$ : (vCO) 2086m, 2045vs, 2005vs, 1980vs, 1964vs, 1906vs, 1846s and  $[v(\mu_3-C)CO_2Et]$  1650(s). <sup>1</sup>H-NMR:  $\delta$ 5.29 (s, 10H, 2Cp), 4.29 (s, 2H, CH<sub>2</sub>), 1.36 (s, 3H, CH<sub>3</sub>). The latter band was the unreacted material **2b** (160 mg). Cluster 5a (270 mg, yield 25.6%) as a dark green solid could be obtained from the fourth band eluted by CH<sub>2</sub>Cl<sub>2</sub>. Anal. Found: C, 39.23; H, 2.45. Calc. for  $C_{23}H_{17}O_{10}CoMo_2$ : C, 39.23; H, 2.43%. IR (cm<sup>-1</sup>): (vCO) 2044vs, 2008vs, 1985vs, 1967vs, 1925vs, 1870s, 1852s; (vCO) 1676m and [v( $\mu_3$ -C)CO<sub>2</sub>Et] 1650(s). <sup>1</sup>H-NMR:  $\delta$  5.84 (s, 2H, H(2) and H(5)), 5.39 (s, 2H, H(3) and H(4)), 5.30 (s, 5H, Cp), 4.32 (s, 2H, CH<sub>2</sub>), 2.32 (s, 3H, CH<sub>3</sub>), 1.37 (s, 3H, CH<sub>3</sub>). Finally, petroleum ether/ ethyl ether/CH<sub>2</sub>Cl<sub>2</sub> (2:1:1) afforded the fifth band, from which cluster 6a (60 mg, yield 5.4%) as a black solid was obtained. Anal. Found: C, 40.25; H, 2.59. Calc. for  $C_{25}H_{19}O_{11}CoMo_2$ : C, 40.24; H, 2.57%. IR (cm<sup>-1</sup>): (vCO) 2058s, 2028vs, 2006vs, 1997vs, 1972s, 1915s, 1839s;  $(\nu C=O)$  1692m, 1677m and  $[\nu(\mu_3-C)CO_2Et]$ 1665s. <sup>1</sup>H-NMR:  $\delta$  5.76–5.41 (d, 8H, 2C<sub>5</sub>H<sub>4</sub>), 5.41 (s, 5H, Cp), 4.37-4.31 (q, 2H, CH<sub>2</sub>, J = 6.88, 7.09, 6.89 Hz), 2.34 (s, 6H, 2CH<sub>3</sub>), 1.40–1.36 (t, 3H, CH<sub>3</sub>, J =7.12, 6.98 Hz).

# 2.6. Reaction of 2e with NaMo(CO)<sub>3</sub>( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)

Treatment of **2e** (360 mg, 0.48 mmol) and NaMo(CO)<sub>3</sub>( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>) (134 mg, 0.48 mmol) in 40 cm<sup>3</sup> of THF at reflux with stirring for 10 h. The workup was similar to that described in reaction of **2b** and NaMo(CO)<sub>3</sub>( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>). Four bands were separated from the reaction as follows: Elution with petroleum ether/CH<sub>2</sub>Cl<sub>2</sub> (1:1) gave cluster **2a** (35 mg, yield 12.4%). The following two bands were cluster **4** (48 mg, yield 15.1%) and unreacted material **2e** (45 mg). Petroleum ether/ether/CH<sub>2</sub>Cl<sub>2</sub> (3:1:1) eluted the fourth band, 50 mg (yield 12.6%) of **5b** as black oil after removal of the

solvent. Anal. Found: C, 43.72; H, 2.59. Calc. for  $C_{30}H_{21}O_{12}CoMo_2$ : C, 43.71; H, 2.57%. IR (cm<sup>-1</sup>): ( $\nu$ CO) 2053s, 2016vs, 1988vs, 1916s, 1848m; ( $\nu$ CO<sub>2</sub>Me) 1723m and [ $\nu(\mu_3$ -C)CO<sub>2</sub>Et] 1657s. <sup>1</sup>H-NMR:  $\delta$  8.09–7.79 (d, 4H, C<sub>6</sub>H<sub>4</sub>), 5.93 (s, 2H, H(2) and H(5)), 5.40 (s, 2H, H(3) and H(4)), 5.25 (s, 5H, Cp), 4.20 (s, 2H, CH<sub>2</sub>), 3.92 (s, 3H, CH<sub>3</sub>), 1.29 (s, 3H, CH<sub>3</sub>). <sup>13</sup>C-NMR  $\delta$  247.65 ( $\mu_3$ -C), 228.83, 227.60, 203.61 (carbonyls bound to metals), 189.31, 181.10 (two ester carbons), 166.09 (C=O), 141.79, 133.21, 129.64, 128.03 (C<sub>6</sub>H<sub>4</sub>), 101.41, 99.64, 98.32, 96.35, 92.23 (C<sub>5</sub>H<sub>4</sub> and C<sub>5</sub>H<sub>5</sub>), 61.33 (CH<sub>2</sub>), 52.35 (O<sub>2</sub>CH<sub>3</sub>), 14.43 (CH<sub>3</sub>).

# 2.7. Reaction of 2a with $NaMo(CO)_3[\eta^5-C_5H_4C(O)-Me]$

Cluster **2a** (880 mg, 1.5 mmol) and NaMo(CO)<sub>3</sub>[ $\eta^5$ -C<sub>5</sub>H<sub>4</sub>C(O)Me] (465 mg, 1.5 mmol) were dissolved in 60 cm<sup>3</sup> of THF and stirred at reflux for 12 h. The workup was similar to that described in reaction of **2b** and NaMo(CO)<sub>3</sub>( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>). Clusters **2a** (198 mg), **4** (120 mg, yield 12.1%), **2b** (50 mg, yield 5.3%) and **5a** (450 mg, yield 42.6%) were separated respectively.

# 2.8. Reaction of **2a** with $NaMo(CO)_3[\eta^5-C_5H_4C(O)-p-C_6H_4CO_2Me]$

A mixture of **2a** (880 mg, 1.5 mmol) and NaMo(CO)<sub>3</sub>[ $\eta^5$ -C<sub>5</sub>H<sub>4</sub>C(O)-*p*-C<sub>6</sub>H<sub>4</sub>CO<sub>2</sub>Me] (645 mg, 1.5 mmol) in 60 cm<sup>3</sup> of THF was refluxed for 12 h. The workup was similar to that described in reaction of **2b** and NaMo(CO)<sub>3</sub>( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>). Clusters **2a** (375 mg), **4** (35 mg, yield 3.5%) and **5b** (585 mg, yield 47.3%) were obtained, respectively.

#### 2.9. X-ray structure determination of 2a and 4

Crystals of 2a and 4 used for X-ray determination were obtained from hexane/CH<sub>2</sub>Cl<sub>2</sub> at -20 °C. The data crystals were mounted in a thin glass capillary. Preliminary examination and data collection were performed with Mo-K<sub> $\alpha$ </sub> radiation ( $\lambda = 0.71073$  Å) on an Enraf-Nonius CAD4 diffractometer equipped with a graphite monochromator. The corrections for Lp factors and empirical absorption were applied to the intensity data. The structure was solved by direct method and expanded using Fourier technique. The non-hydrogen atoms were refined by the full-matrix least-squares method anisotropically, hydrogen atoms were included but not refined. All calculations were performed on macro VAX 3100 computer using the TEXSAN program system. Crystallographic data are collected in Table 1.

Table 1 Crystal and refinement data for cluster **2a** and **4** 

| Cluster                                            | 2a                                                                 | 4                                                                |
|----------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|
| Empirical formula                                  | C <sub>17</sub> H <sub>10</sub> O <sub>10</sub> Co <sub>2</sub> Mo | C <sub>21</sub> H <sub>15</sub> O <sub>9</sub> CoMo <sub>2</sub> |
| Formula weight                                     | 588.05                                                             | 662.14                                                           |
| Temperature (K)                                    | 293(2)                                                             | 293(2)                                                           |
| Wavelength (Å)                                     | 0.71073                                                            | 0.71073                                                          |
| Crystal system                                     | triclinic                                                          | triclinic                                                        |
| Space group                                        | $P\bar{1}$                                                         | ΡĪ                                                               |
| Unit cell dimensions                               |                                                                    |                                                                  |
| a (Å)                                              | 8.1316(16)                                                         | 8.4906(17)                                                       |
| b (Å)                                              | 8.1440(16)                                                         | 9.2475(18)                                                       |
| c (Å)                                              | 16.321(3)                                                          | 14.862(3)                                                        |
| α (°)                                              | 98.21(3)                                                           | 89.15(3)                                                         |
| β (°)                                              | 91.12(3)                                                           | 87.13(3)                                                         |
| γ (°)                                              | 107.03(3)                                                          | 76.90(3)                                                         |
| Volume (Å <sup>3</sup> )                           | 1020.7(4)                                                          | 1135.1(4)                                                        |
| Ζ                                                  | 2                                                                  | 2                                                                |
| $D_{\text{calc}}$ (Mg m <sup>-3</sup> )            | 1.913                                                              | 1.937                                                            |
| Absorption coefficient                             | 2.262                                                              | 1.860                                                            |
| $(mm^{-1})$                                        |                                                                    |                                                                  |
| $F(0\ 0\ 0)$                                       | 576                                                                | 648                                                              |
| Crystal size (mm <sup>3</sup> )                    | $0.65 \times 0.65 \times 0.30$                                     | $0.625 \times 0.40 \times 0.125$                                 |
| $\theta$ Range for data                            | 2.53 - 25.97                                                       | 2.26-25.97                                                       |
| collection (°)                                     |                                                                    |                                                                  |
| Reflections collected                              | 4094                                                               | 4718                                                             |
| Unique reflections                                 | 3950 $[R_{int} = 0.0391]$                                          | 4410 $[R_{int} = 0.0229]$                                        |
| Refinement method                                  |                                                                    |                                                                  |
| Data/restraints/                                   | 3950/0/272                                                         | 4410/0/229                                                       |
| parameters                                         |                                                                    |                                                                  |
| Goodness-of-fit on $F^2$                           | 1.164                                                              | 1.048                                                            |
| Final <i>R</i> indices                             | $R_1 = 0.0290,$                                                    | $R_1 = 0.0392,$                                                  |
| $[I > 2\sigma(I)]$                                 | $wR_2 = 0.0699$                                                    | $wR_2 = 0.1000$                                                  |
| R indices (all data)                               | $R_1 = 0.0315,$                                                    | $R_1 = 0.0433,$                                                  |
|                                                    | $wR_2 = 0.0709$                                                    | $wR_2 = 0.1024$                                                  |
| Largest diff. peak and hole ( $e \text{ Å}^{-3}$ ) | 0.363 and -0.495                                                   | 1.193 and -1.173                                                 |

 $R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. \ wR_{2} = [\Sigma \omega (|F_{o}| - |F_{c}|)^{2} / \Sigma \omega F_{o}^{2}]^{1/2}.$ 

# 3. Results and discussion

It is known that the metal exchange reactions of bridging bis(cyclopentadienyl) transition metal reagents with tetrahedral clusters such as  $FeCo_2(CO)_9(\mu_3-S)$  and  $RuCo_2(CO)_9(\mu_3-S)$  can link the two clusters together [9,20]. If the linked cluster could be treated with a bridging metal exchange reagent further, a new methodology for higher-nuclearity cluster compound would come into being. Metal exchange reactions in linked clusters have been studied recently [15–19], we wish to report the investigation of metal exchange reactions of  $\{[(\mu_3-C)R]Co_2M(CO)_8[\eta^5-C_5H_4C(O)]\}_2C_6H_4-p$  and  $\{(\mu_3-Se)RuCoMo(CO)_8[\eta^5-C_5H_4C(O)]\}_2C_6H_4-p$  with [Mo(CO)<sub>3</sub>( $\eta^5-C_5H_4R'$ )]<sup>-</sup> in this report. All the work is described in Schemes 1–3.

When the linked cluster {[ $(\mu_3-C)R$ ]Co<sub>2</sub>Mo(CO)<sub>8</sub>[ $\eta^5-C_5H_4C(O)$ ]}<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-*p* (**1a–b**) was allowed to react with monoanion [Mo(CO)<sub>3</sub>( $\eta^5-C_5H_4R'$ )]<sup>-</sup> in 1:1 molecular ratio, the [Mo(CO)<sub>2</sub>Cp\*] fragment in Co<sub>2</sub>Mo( $\mu_3$ -C) core was replaced by the [Mo(CO)<sub>2</sub>( $\eta^5-C_5H_4R'$ )] isolobal

fragment to yield the single cluster [(µ<sub>3</sub>-C)R]Co<sub>2</sub>Mo(CO)<sub>8</sub>( $\eta^{5}$ -C<sub>5</sub>H<sub>4</sub>R') (**2a**, R = CO<sub>2</sub>Et, R' = H; **2b**,  $R = CO_2Et$ , R' = C(O)Me; **2c**,  $R = R' = CO_2Et$ ; 2d,  $R = C_6H_5$ ,  $R' = CO_2Et$ ) as the only product. It was not found that the Co(CO)<sub>3</sub> fragment in Co<sub>2</sub>Mo( $\mu_3$ -C) core was replaced by the  $[Mo(CO)_3(\eta^5-C_5H_4R')]^$ anion to give the linked cluster  $[(\mu_3-C)R]$ - $Co_2Mo(CO)_8[\eta^5-C_5H_4C(O)-p-C_6H_4-C(O)C_5H_4 \eta^{5}](CO)_{7}CoMo_{2}[(\mu_{3}-C)R](\eta^{5}-C_{5}H_{4}R)$ . However, the reaction of  $\{(\mu_3-Se)RuCoMo(CO)_8[\eta^5-C_5H_4C(O)]\}_2C_6H_4$ p (1c) was found to react with NaMo(CO)<sub>3</sub>[ $\eta^{2}$ - $C_5H_4C(O)Me$ ] to yield the linked cluster ( $\mu_3$ -Se)RuCoMo(CO)<sub>8</sub>[ $\eta^5$ -C<sub>5</sub>H<sub>4</sub>C(O)-*p*-C<sub>6</sub>H<sub>4</sub>-C(O)C<sub>5</sub>H<sub>4</sub>- $\eta^{5}$ ](CO)<sub>7</sub>RuMo<sub>2</sub>( $\mu_{3}$ -Se)[ $\eta^{5}$ -C<sub>5</sub>H<sub>4</sub>C(O)Me] (3) successfully, although a small amount of the single cluster  $(\mu_3-Se)RuCoMo(CO)_8[\eta^5-C_5H_4C(O)Me]$  (2f) also was formed.

In order to investigate the self-displacement of the two Cp\*(CO)<sub>2</sub>M species further, experiments described in Schemes 2 and 3 were carried out. The separation of cluster 2a confirmed that the two different  $d^5$  ML<sub>5</sub> fragment of the type Cp\*(CO)<sub>2</sub>M could displace each other in the system involving Co(CO)<sub>3</sub> containing cluster compounds. This phenomenon has been found in cobalt containing clusters capped by the sulfido ligand [8]. It is found that this occurred in carbon and selenium capped metal clusters in this report. Further study found that functional substitution on the cyclopentadienyl ligand could influence the product's yield. Their electron-withdrawing effect can reduce the reactivity of the fragment  $M(CO)_2(\eta^5-C_5H_4R)$  unit in the metal exchange reaction. This indicated that the fragment  $M(CO)_2(\eta^5-C_5H_5)$  is more reactive than the fragment  $M(CO)_2(\eta^5-C_5H_4R)$ . Therefore, there are two routes to prepare the cluster  $[(\mu_3-C)R]CoMo_2(CO)_8(\eta^5 C_5H_4R'$ )( $\eta^5$ - $C_5H_5$ ): reaction of [( $\mu_3$ -C)R]Co<sub>2</sub>Mo- $(CO)_8(\eta^5-C_5H_4R')$  with  $[Mo(CO)_3(\eta^5-C_5H_5)]^-$ , and reaction of  $[(\mu_3-C)R]Co_2Mo(CO)_8(\eta^5-C_5H_5)$  and  $[Mo(CO)_3(\eta^5-C_5H_4R')]^-$ . The suitable preparation route should be the latter route as described in Scheme 3.

Except of 2a, 2b, 2f and 2e, the compounds 1a-b, 2c, 2d, 3, 4, 5a-b and 6a are all new and were fully characterized by elemental analysis, IR and NMR spectroscopies. In their IR spectra, carbonyl absorption bands appear in the range of 2091–1839 cm<sup>-1</sup>, in good agreement with literature [11,17,20,26,27]. Bridging or semi-bridging carbonyls might also exist due to one or two absorption bands present between 1900 and 1839 cm<sup>-1</sup>. The IR spectra of 2a-d, 3, 5a-b and 6a also show one absorption band at ca. 1660 cm<sup>-1</sup>, which is characteristic of the CO<sub>2</sub>Et group attached to the capped carbon atom. The frequency around 1720 cm<sup>-1</sup> in IR spectra of 2c and 2d is the ester absorption attached to cyclopentadienyl ligand. The absorption bands in the range of 1692–1653 cm<sup>-1</sup> in IR spectra of





**1b**, **5a**, **6a** and **3** are carbonyl absorption frequencies on the cyclopentadienyl ligand. For the <sup>1</sup>H-NMR assignment of these clusters, the multiplets in the range of  $\delta$ 5.99–5.06 are assigned to the protons on cyclopentadienyl ring. The <sup>1</sup>H-NMR signals around  $\delta$  1.30 and 4.30 in **2a–d**, **4**, **5a–b** and **6a** spectra are the resonances of ethyl protons on the ( $\mu_3$ -C)CO<sub>2</sub>Et group. In the <sup>1</sup>H-NMR spectra of **3**, **5a** and **6a**, the singlet at  $\delta$  2.30 is due to the acetyl protons attached to cyclopentadienyl ligand. <sup>13</sup>C-NMR spectra of **3** and **5b** confirmed their structures. The resonances downfield between  $\delta$  229.65 and 192.96 are assigned to the carbonyl ligands bound





Scheme 3.

to the transition metal atoms. The signals at  $\delta$  141.79–128.29 arise from the carbon atoms in the benzene ring. The chemical shifts of cyclopentadienyl carbons are observed in the range of  $\delta$  101.41–90.41.

The crystal structures of 2a and 4 were determined by single-crystal X-ray structure analyses. Selected bond distances and angles are listed in Tables 2 and 3. Figs. 1 and 2 show the molecular structures of 2a and 4.

As seen in Fig. 1, cluster 2a has a tetrahedral skeleton composed of C, Mo and two Co atoms. One CO2Et group is attached to the capped carbon atom. The Co atom is coordinated by three terminal CO ligands, and the Mo atom is coordinated by two terminal CO ligands and one cyclopentadienyl ligand. Bridging carbon atom to the two Co atoms and one Mo atom with bond lengths C(14)-Co(1) = 1.914(2) Å, C(14)-Co(2) =1.919(3) Å and C(14)–Mo = 2.094(3) Å, respectively, are in accord with previous literature and our reports [11,16,27]. The bond distance of C(14)–C(15) is 1.478(4) Å, slightly shorter than a normal C-C single bond length (1.544 Å). This is because the C(14) atom is capped by three transition metal atoms, which also provide a reasonable explanation for the attached CO<sub>2</sub>Et absorption frequency being as low as at 1660  $\mathrm{cm}^{-1}$ .

As seen in Fig. 2, cluster **4** also has a tetrahedral skeleton composed of C, two Mo atoms and one Co atom. Selected bond angles and lengths of the tetrahedra are approximately the same as those in the literature

| Table 2                                                 |  |
|---------------------------------------------------------|--|
| Selected bond lengths (Å) and angles (°) for cluster 2a |  |

| Bond lengths      |            |                   |           |
|-------------------|------------|-------------------|-----------|
| Mo-C(14)          | 2.094(3)   | Co(1)-Co(2)       | 2.4952(9) |
| Mo-Co(1)          | 2.6635(9)  | Co(2) - C(14)     | 1.919(3)  |
| Mo-Co(2)          | 2.7158(11) | C(14)-C(15)       | 1.478(4)  |
| Bond angles       |            |                   |           |
| Co(1)-C(14)       | 1.914(2)   |                   |           |
| C(14)-Mo-Co(1)    | 45.51(7)   | C(14)-Co(2)-Co(1) | 49.29(7)  |
| C(14)-Mo-Co(2)    | 44.73(7)   | C(14)-Co(2)-Mo    | 50.20(8)  |
| Co(1)-Mo-Co(2)    | 55.26(3)   | Co(1)-C(14)-Co(2) | 81.25(10) |
| C(14)-Co(1)-Co(2) | 49.46(8)   | Co(1)-C(14)-Mo    | 83.16(9)  |
| C(14)-Co(1)-Mo    | 51.33(8)   | Co(2)-C(14)-Mo    | 85.06(10) |
| Co(2)-Co(1)-Mo    | 63.43(3)   | Co(1)-Co(2)-Mo    | 61.30(3)  |
|                   |            |                   |           |

Table 3 Selected bond lengths (Å) and angles (°) for cluster **4** 

| Bond lenghts     |           |                  |            |
|------------------|-----------|------------------|------------|
| Mo(1)-C(8)       | 2.098(3)  | Mo(2)-Co         | 2.7207(10) |
| Mo(1)-Co         | 2.7248(9) | Co-C(8)          | 1.936(3)   |
| Mo(1)-Mo(2)      | 2.9572(9) | C(8)-C(9)        | 1.477(5)   |
| Mo(2)-C(8)       | 2.097(4)  |                  |            |
| Bond angles      |           |                  |            |
| C(8)-Mo(1)-Co    | 45.05(10) | C(8)-Co-Mo(2)    | 50.12(11)  |
| C(8)-Mo(1)-Mo(2) | 45.15(10) | Mo(2)-Co-Mo(1)   | 65.78(3)   |
| Co-Mo(1)-Mo(2)   | 57.04(3)  | Co-C(8)-Mo(2)    | 84.75(14)  |
| C(8)-Mo(2)-Co    | 45.13(10) | Co-C(8)-Mo(1)    | 84.88(13)  |
| C(8)-Mo(2)-Mo(1) | 45.19(9)  | Mo(2)-C(8)-Mo(1) | 89.66(13)  |
| Co-Mo(2)-Mo(1)   | 57.18(2)  |                  |            |



Fig. 1. Molecular structure of compound 2a.

[11,16,27]. The bridging carbon atom is bonded to the Co and Mo atoms with bond lengths are C(8)–Co = 1.936(3) Å, C(8)–Mo(1) = 2.098(3) Å and C(8)–Mo(2) = 2.097(4) Å. The acute angles in the tetrahedra about the basal metal atoms range from 57.04(3) to  $65.78(3)^{\circ}$  and those of the carbon atom average 86.43°, a slightly deviation from a perfect tetrahedral geometry.



Fig. 2. Molecular structure of compound 4.

#### 4. Supplementary material

Crystallographic data for the structure analysis has been deposited with the Cambridge Crystallographic Data Centre, CCDC, No. 201060 for cluster **2a** and No. 201061 for cluster **4**. Copies of this information may be obtained free of charge from the Director, CCDC, 12, Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

### References

- [1] H. Vahrenkamp, Comments Inorg. Chem. 4 (1985) 253.
- [2] D.N. Duffy, M.M. Kassis, A.D. Rae, J. Organomet. Chem. 460 (1993) 97.
- [3] C.-A. Dickson, N.J. Coville, J. Organomet. Chem. 427 (1992) 335.
- [4] H.T. Schacht, H. Vahrenkamp, J. Organomet. Chem. 381 (1990) 261.

- [5] M.F. D'Agostino, C.S. Frampton, M.J. McGlinchey, Organometallics 9 (1990) 2972.
- [6] S.D. Jensen, B.H. Robinson, J. Simpson, Organometallics 5 (1986) 1690.
- [7] L.C. Song, J.Y. Shen, O.M. Hu, B.S. Han, R.J. Wang, H.G. Wang, Inorg. Chim. Acta 219 (1994) 93.
- [8] L.C. Song, J.Y. Shen, O.M. Hu, X.Y. Huang, Polyhedron 14 (1995) 2079.
- [9] L.C. Song, J.Y. Shen, O.M. Hu, X.Y. Huang, Orgnometallics 14 (1995) 98.
- [10] H.P. Wu, Y.Q. Yin, X.Y. Huang, K.B. Yu, J. Oragnomet. Chem. 498 (1995) 119.
- [11] H.P. Wu, Zh.Y. Zhao, Y.Q. Yin, D.S. Jin, Polyhedron 14 (1995) 1543.
- [12] H.P. Wu, Y.Q. Yin, Q.-Ch. Yang, Inorg. Chim. Acta 245 (1996) 143.
- [13] E.R. Ding, Sh.M. Liu, Zh.Y. Zhao, Y.Q. Yin, J. Sun, Polyhedron 16 (1997) 2387.
- [14] E.R. Ding, Y.Q. Yin, J. Sun, J. Organomet. Chem. 559 (1998) 157.
- [15] X.N. Chen, J. Zhang, Y.Q. Yin, X.Y. Huang, Organometallics 18 (1999) 3164.
- [16] J. Zhang, X.N. Chen, Y.Q. Yin, W.L. Wang, X.Y. Huang, J. Organomet. Chem. 582 (1999) 252.
- [17] J. Zhang, Y.H. Zhang, X.N. Chen, E.R. Ding, Y.Q. Yin, Orgnometallics 19 (2000) 5032.
- [18] L.C. Song, D.S. Guo, Q.M. Hu, J. Sun, J. Organomet. Chem. 616 (2000) 140.
- [19] L.C. Song, W.F. Zhu, Q.M. Hu, Organometallics 21 (2002) 5066.
- [20] Y.H. Zhang, J.Ch. Yuan, W.J. Lao, Y.Q. Yin, Z.X. Huang, J.J. Wu, J. Organomet. Chem. 628 (2001) 123.
- [21] Y.H. Zhang, J.Ch. Yuan, Y.Q. Yin, Zh.Y. Zhou, A.S.C. Chan, New J. Chem. 25 (2001) 939.
- [22] S. Onaka, M. Otsuka, Chem. Lett. 24 (1995) 269.
- [23] S. Onaka, M. Otsuka, A. Mizuno, S. Takagi, K. Sako, M. Otomo, Chem. Lett. 23 (1994) 45.
- [24] R.M. Laine, Inorganic and Organometallic Polymers with Special Properties, Kluwer Academic Publisher, 1992.
- [25] E.R. Ding, Sh.L. Wu, Ch.G. Xia, Y.Q. Yin, J. Organomet. Chem. 568 (1998) 157.
- [26] Y.H. Zhang, Q.Sh. Li, Ch.G. Xia, Y.Q. Yin, Zh.Y. Zhou, X.Z. Chen, Chem. J. Chin. Univ. 23 (2002) 1515.
- [27] Y.H. Zhang, W.G. Chi, Y.Q. Yin, Z.X. Huang, J.J. Wu, Chin. J. Struct. Chem. 21 (2002) 17 Cluster **1b**: {[( $\mu_3$ -C)C<sub>6</sub>H<sub>5</sub>]Co<sub>2</sub>Mo(CO)<sub>8</sub>[η<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>C(O)]}<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>-*p*, IR (νCO) 2085(s), 2076(s), 2050(vs), 2038(vs), 2022(vs), 1992(vs), 1983(vs), 1963(s), 1921(s), 1881(s) cm<sup>-1</sup>; (νC=O)1653(m) cm<sup>-1</sup>. <sup>1</sup>H-NMR: δ 7.70 (s, 4H, C<sub>6</sub>H<sub>4</sub>), 7.14 (s, 10H, 2C<sub>6</sub>H<sub>5</sub>), 5.76–5.22 (d, 8H, 2C<sub>5</sub>H<sub>4</sub>). Anal. Calc. For C<sub>24</sub>H<sub>11</sub>O<sub>9</sub>Co<sub>2</sub>Mo: C, 43.87; H, 1.69. Found: C, 43.86; H, 1.72.